Problem Sheet 2, v2

1. i) Draw the graphs for $[x]$ and $\{x\}$.
ii) Show that for $\alpha \in \mathbb{R}$,

$$
\int_{\alpha}^{\alpha+1}[t] d t=\alpha \quad \text { and } \quad \int_{\alpha}^{\alpha+1}\{t\} d t=\frac{1}{2}
$$

Hint Split these integrals at the integer which must lie in any interval of length 1 , such as $[\alpha, \alpha+1]$.
iii) Prove that for $x>1$

$$
\begin{aligned}
\int_{1}^{x}[t] d t & =\frac{1}{2}[x]([x]-1)+\{x\}[x] \\
& =\frac{1}{2} x(x-1)+\frac{1}{2}\{x\}(1-\{x\}) .
\end{aligned}
$$

This is often written as

$$
\int_{1}^{x}[t] d t=\frac{1}{2} x(x-1)+O(1)
$$

though the error term is zero when $x \in \mathbb{Z}$. The result will be used in the course in the form

$$
\int_{1}^{x}[t] d t=\frac{1}{2} x^{2}+O(x)
$$

(where the error is not now zero when x is an integer.)
2. How fast does the logarithm grow?
i) Recall the fundamental idea from Chapter 1,

$$
\begin{equation*}
\left(\inf _{t \in[y, x]} f(t)\right)(x-y) \leq \int_{y}^{x} f(t) d t \leq\left(\sup _{t \in[y, x]} f(t)\right)(x-y) . \tag{27}
\end{equation*}
$$

Use (27) to show that, for all real $y>1$,

$$
\log y<y-1<y
$$

ii) By an appropriate choice of y in part i show that for all $n \geq 1$ we have

$$
\begin{equation*}
\log x<n x^{1 / n} \tag{28}
\end{equation*}
$$

for $x>1$.
iii) Deduce that for all $\varepsilon>0$, we have $\log x<_{\varepsilon} x^{\varepsilon}$. This means that the logarithm of x grows slower than any power of x.

Here $\log x<_{\varepsilon} x^{\varepsilon}$ means there exists a constant $C(\varepsilon)$, depending on ε, for which $\log x \leq C(\varepsilon) x^{\varepsilon}$ for all $x \geq 1$.
iv) In the notes we make use of both of

$$
x^{1 / 3} \log x<C x^{1 / 2} \quad \text { and } \quad x^{\delta}<C \frac{x}{\log ^{\ell} x},
$$

for any constant $C>0, \delta<1$ and $\ell \geq 1$. Prove these inequalities both hold for sufficiently large x.
3. A technical result used in more advanced results on the Prime Number Theorem.
For a function whose growth is

- faster than x^{δ} for any $\delta<1$ yet
- slower than $x / \log ^{\ell} x$ for any $\ell \geq 1$,
consider

$$
x \exp \left(-C(\log x)^{\alpha}\right)
$$

with constants $C>0$ and $\alpha>0$.
Prove that
a) If $\delta<1$ then for any $C>0$

$$
x^{\delta} \leq x \exp \left(-C(\log x)^{\alpha}\right)
$$

for all sufficiently large x as long as $\alpha<1$.
b) If $\ell \geq 1$ then for any $C>0$

$$
x \exp \left(-C(\log x)^{\alpha}\right) \leq \frac{x}{\log ^{\ell} x}
$$

for all sufficiently large x as long as $\alpha>0$.
4. i) Estimates of integrals found in error terms. Show that for $\alpha \geq 0$ and $\ell \geq 1$ we have.

$$
\int_{2}^{x} \frac{t^{\alpha}}{\log ^{\ell} t} d t \ll_{\ell, \alpha} \frac{x^{1+\alpha}}{\log ^{\ell} x}
$$

Hint Split the integral at \sqrt{x} and use the fact that $\log t$ is an increasing function of t.
ii) Show that for $\alpha>1$ and $\ell \geq 1$ we have

$$
\int_{x}^{\infty} \frac{\log ^{\ell} t}{t^{\alpha}} d t<_{\ell, \alpha} \frac{\log ^{\ell} x}{x^{\alpha-1}}
$$

Hint Split the integral at x^{2} and use (27). In the shorter interval again use that $\log t$ is an increasing function while in the longer interval use $\log t \ll t^{\varepsilon}$ with some appropriately chosen ε.
iii) A result used in more advanced results on the Prime Number Theorem. Show that with $\alpha>0$ and $C>0$ we have

$$
\int_{2}^{x} \exp \left(-C(\log t)^{\alpha}\right) d t \ll x \exp \left(-C^{\prime}(\log x)^{\alpha}\right)
$$

for some $C^{\prime}>0$.

Problem Sheet 2: Generalising Euler's constant.

Recall from lectures that a result for comparing sums with integrals is that if f has a continuous derivative, is non-negative and monotonic then

$$
\begin{equation*}
\sum_{1 \leq n \leq x} f(n)=\int_{1}^{x} f(t) d t+O(\max (f(1), f(x))) \tag{29}
\end{equation*}
$$

for all real $x \geq 1$.
In fact we deduced (29) from the Euler Summation: Let f have a continuous derivative $x>0$. Then

$$
\sum_{1 \leq n \leq x} f(n)=\int_{1}^{x} f(t) d t+f(1)-\{x\} f(x)+\int_{1}^{x}\{t\} f^{\prime}(t) d t
$$

for all real $x \geq 1$.
As an application of (29) we showed that there exists a constant γ such that

$$
\begin{equation*}
\sum_{1 \leq n \leq x} \frac{1}{n}=\log x+\gamma+O\left(\frac{1}{x}\right) \tag{30}
\end{equation*}
$$

for $x \geq 1$. The essential idea here is that we come across a convergent integral

$$
\int_{1}^{x} \frac{\{t\}}{t^{2}} d t
$$

This could simply be bounded as $O(1)$, but for a better result it is completed to infinity and the tail end, the integral from x to ∞, is bounded (often using the results of Question 4). This is a standard method and is used in the following question in which we generalise (30) to a sum of $(\log n)^{\ell} / n$ for any integer $\ell \geq 1$. The result of Question 5 is used later when examining the Laurent Expansion of $\zeta(s)$.
5. Prove that for all $\ell \geq 1$ there exists a constant C_{ℓ} such that

$$
\sum_{n \leq x} \frac{\log ^{\ell} n}{n}=\frac{1}{\ell+1} \log ^{\ell+1} x+C_{\ell}+O\left(\frac{\log ^{\ell} x}{x}\right)
$$

for all real $x \geq 1$.
The result when $\ell=0$ has $C_{0}=\gamma$, Euler's constant. Notice how we have the best possible error term.

Problem Sheet 2: More Sums of logs.

6. Generalise a result in lectures written (in a weakened form) as

$$
\sum_{1 \leq n \leq x} \log n=x \log x+O(x)
$$

i) With integer $\ell \geq 1$ justify

$$
\begin{equation*}
\sum_{1 \leq n \leq x} \log ^{\ell} n=\int_{1}^{x} \log ^{\ell} t d t+O\left(\log ^{\ell} x\right) \tag{31}
\end{equation*}
$$

for all real $x \geq 1$.
ii) Prove that

$$
\int_{1}^{x} \log ^{\ell} t d t=x \log ^{\ell} x+O_{\ell}\left(x \log ^{\ell-1} x\right)
$$

Deduce

$$
\sum_{1 \leq n \leq x} \log ^{\ell} n=x \log ^{\ell} x+O_{\ell}\left(x \log ^{\ell-1} x\right) .
$$

for all real $x \geq 1$.
Note the best error term here would be $O\left(\log ^{\ell} x\right)$, far smaller than the one here.
7. Improve the result of $Q u 6$ to the best possible error term.

Change the variable of integration in (31) to $u=\log t$ so

$$
\int_{1}^{x} \log ^{\ell} t d t=\int_{0}^{\log x} e^{u} u^{\ell} d u
$$

i) Prove by induction that

$$
\begin{equation*}
\int_{0}^{y} e^{u} u^{d} d u=e^{y} \sum_{r=0}^{d}(-1)^{r} \frac{d!}{(d-r)!} y^{d-r}-(-1)^{d} d! \tag{32}
\end{equation*}
$$

for all $d \geq 0$.
ii) Prove that for any integer $\ell \geq 0$ we have

$$
\sum_{n \leq x} \log ^{\ell} n=x P_{\ell}(\log x)+O\left(\log ^{\ell} x\right),
$$

where

$$
P_{d}(y)=\sum_{r=0}^{d}(-1)^{r} \frac{d!}{(d-r)!} y^{d-r},
$$

a polynomial of degree d.

Problem Sheet 2: Partial Summation

Partial Summation is often no more than an exercise in interchanging Sums and Integrals.
8. Let $x \geq 1$ be real, $\left\{a_{n}\right\}_{n \geq 1}$ a sequence of complex numbers and $A(x)=$ $\sum_{1 \leq n \leq x} a_{n}$.
a) Show that

$$
\sum_{1 \leq n \leq x} a_{n}(x-n)=\int_{1}^{x} A(t) d t
$$

b) Show that

$$
\sum_{1 \leq n \leq x} a_{n} \log \frac{x}{n}=\int_{1}^{x} \frac{A(t)}{t} d t=\int_{0}^{\log x} A\left(e^{y}\right) d y
$$

c) Show that

$$
\sum_{1 \leq n \leq x} a_{n}\left(e^{x}-e^{n}\right)=\int_{1}^{x} e^{t} A(t) d t=\int_{e}^{e^{x}} A(\log y) d y
$$

Hint Write $x-n, \log (x / n)$ and $e^{x}-e^{n}$ as integrals.
9. The last question concerned sums over $n \leq x$, this question will be for sums over $n>x$.

For f with a continuous derivative for $x>0$ satisfying $f(x) \rightarrow 0$ as $x \rightarrow \infty$ and $\int_{1}^{\infty}\left|f^{\prime}(t)\right| d t<\infty$, then

$$
\sum_{n>x} a_{n} f(n)=-A(x) f(x)-\int_{x}^{\infty} A(t) f^{\prime}(t) d t
$$

for sequences $\left\{a_{n}\right\}$ for which the sum and integral converge.
Hint Write $f(n)$ as an integral from n to ∞.
10. a) Use Partial Summation to prove that if f has a continuous derivative on $[1, x]$ then for a sum over primes we have

$$
\begin{equation*}
\sum_{p \leq x} f(p)=-\int_{2}^{x} \pi(t) f^{\prime}(t) d t+\pi(x) f(x) \tag{33}
\end{equation*}
$$

b) Recalling that $\theta(x)=\sum_{p \leq x} \log p$, deduce that

$$
\theta(x)=\pi(x) \log x+O\left(\frac{x}{\log x}\right) .
$$

Compare this with Theorem 2.20.

Hint for b. You may have to use Chebyshev's bound $\pi(x)=O(x / \log x)$ in the integral that arises along with Question 4

Problem Sheet 2: Deductions from Merten's Theorem.
11. Prove that

$$
\sum_{2 \leq n \leq x} \frac{1}{n \log n}=\log \log x+O(1)
$$

12. On the previous Problem Sheet you were asked to show that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{1+\alpha}} \tag{34}
\end{equation*}
$$

converges for all $\alpha>0$.

Question 11 could be compared with Merten's result

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+O(1)
$$

This may lead you to think that the n-th prime is "of size" $n \log n$, which we might write as $p_{n} \approx n \log n$. In which case $\log p_{n}$ may be thought of as of size

$$
\log p_{n} \approx \log (n \log n)=\log n+\log \log n \approx \log n .
$$

Thus $p_{n}\left(\log p_{n}\right)^{\alpha}$ would be "approximately" of the size

$$
p_{n}\left(\log p_{n}\right)^{\alpha} \approx(n \log n)(\log n)^{\alpha}=n(\log n)^{1+\alpha} .
$$

Hence the convergence of (34) might then suggest that the sum over primes

$$
\sum_{p} \frac{1}{p(\log p)^{\alpha}}
$$

converges for all $\alpha>0$. Prove that this is so.
Hint Use Partial Summation to remove the $1 /(\log p)^{\alpha}$ so you can apply Merten's Theorem, Theorem 2.22, and in particular (18).
13. Prove that for a fixed $c>1$,

$$
\sum_{x<n \leq c x} \frac{\Lambda(n)}{n} \ll 1
$$

i.e. this sum is bounded for all $x>1$.
(What is more difficult, and thus of more interest, is to show that this sum is bounded below and thus non-zero. For this would then show the existence of $n \in[x, c x]$ for which $\Lambda(n) \neq 0$. This n would be a power of a prime, and since powers greater or equal to 2 are rare, this would lead to the existence of a prime in $[x, c x]$ for any $c>1$.)

Hint Use Merten's result (16) (twice).
14. Prove that

$$
\int_{1}^{x} \frac{\psi(u)}{u^{2}} d u=\log x+O(1) .
$$

Hint Interchange the integral and the summation within the definition of ψ, use Merten's Theorem and Chebyshev's bound $\psi(x) \ll x$.
15. Prove that for a fixed constant $c>1$,

$$
\int_{1}^{x} \frac{\psi(c u)-\psi(u)}{u^{2}} d u=(c-1) \log x+O_{c}(1) .
$$

Note, Since for sufficiently large x the right hand side is greater than 0 we must have that the integrand is non-zero, thus $\psi(c u)-\psi(u)>0$, and in particular, there is a prime in $[u, c u]$, for some values of u. Unfortunately this does not tell us for which u these intervals contain a prime (it is, in fact, for all u sufficiently large) and how many primes are in these intervals.

Problem Sheet 2: Prime Number Theorem

16. (Tricky) Assume the Prime Number Theorem in the form $\pi(x) \sim$ $x / \log x$ as $x \rightarrow \infty$. Prove that the n-th prime p_{n} satisfies

$$
p_{n} \sim n \log n
$$

as $n \rightarrow \infty$, i.e.

$$
\lim _{n \rightarrow \infty} \frac{p_{n}}{n \log n}=1
$$

Hint Note that $\pi\left(p_{n}\right)=n$, apply the Prime Number Theorem in the form given in the question and take logarithms.

The question justifies the assumption in Question 12.

